Challenges and Opportunities in Plastics Upcycling: The Role of Biological and Chemical Recycling

 Π

Gregg T. Beckham National Renewable Energy Laboratory

 Π

SPC Advance October 8th, 2019

Sustainable Transportation	Energy Productivity	Renewable Electricity
Vehicle Technologies	Residential Buildings	Solar Wind
Hydrogen	Commercial Buildings	Water: Marine Hydrokinetics
Biofuels		Geothermal

Systems Integration

Grid Integration of Clean Energy

Distributed **Energy Systems**

Batteries and Thermal Storage

Energy Analysis

Partners

Private Industry

Federal Agencies

State/Local Government

International

National Renewable Energy Laboratory Scope of Mission

National Renewable Energy Laboratory Scope of Mission

Our group develops green processes and products from biology and chemistry

Enzymes for biofuels production

Image: M. Sandgren

Image: S. Cragg

New biology and chemistry to convert lignin to chemicals

G.T. Beckham et al., Curr. Opin. Biotech. 2016

Green processes for bio-based carbon fiber

Our group develops green processes and products from biology and chemistry

Enzymes for biofuels production

Image: M. Sandgren

Image: S. Cragg

New biology and chemistry to convert lignin to chemicals

G.T. Beckham et al., Curr. Opin. Biotech. 2016

Green processes for bio-based carbon fiber

Plastics are ubiquitous in modern society

~300 MM tonnes per year produced worldwide

Ellen MacArthur Foundation, 2016

Plastics are creating an environmental catastrophe

~8 MM tonnes per year of plastics enter the ocean

Huffington Post

PLASTICS PRODUCTION

RATIO OF PLASTICS TO FISH IN THE OCEAN' (BY WEIGHT)

PLASTICS' SHARE OF GLOBAL OIL CONSUMPTION²

PLASTICS' SHARE OF CARBON BUDGET³

Ellen MacArthur Foundation, 2016 Jambeck *et al., Science* 2015

Recycling rates remain low and most recycling is "down-cycling"

Recycling can save between 40-90% of embedded energy in plastics

Geyer, Jambeck, Law, Science Adv. 2017 Rahimi and Garcia, Nature Rev. Chem. 2017 Challenge 1: What do we do with the plastics we make now?

Options for recycling and upcycling of plastics

Mechanical recycling

Van Geem et al. 2017

Options for recycling and upcycling of plastics

Mechanical recycling

Van Geem et al. 2017

Plastics News Europe

Pyrolysis (and refinery integration)

Gasification

Options for recycling and upcycling of plastics

Mechanical recycling

Van Geem et al. 2017

Pyrolysis (and refinery integration)

- Low selectivity to products
- Tar, char production
- Contaminants
- production

Gasification

Disadvantages for pyrolysis & gasification:

- Feeding of solid plastics at high pressure - Little economic and energy incentive relative to mechanical recycling or virgin polymer

Biological (or selective) recycling is another option

Microbes can selectively "funnel" multiple substrates to a single product

Concept demonstrated for lignin, wastewater, and mixed nylon/PET waste

Biological (or selective) recycling is another option

Microbes can selectively "funnel" multiple substrates to a single product

Concept demonstrated for lignin, wastewater, and mixed nylon/PET waste

Advantages for biological recycling:

- Selective for heterogeneous inputs including contaminants from food
- Low T, P, and energy
- Sorting is not a problem
- Upstream (catalytic, mechanical, thermal) processes do not need to be selective
- Can harness existing/similar infrastructure to anaerobic digestion

What can we make from biological recycling and upcycling?

Today: methane from anaerobic digestion of compostable plastics

NPR

What can we make from biological recycling and upcycling?

Today: methane from anaerobic digestion of compostable plastics

ADBA

NPR

Tomorrow: anything you can make from synthetic biology!

Product options from biological recycling and upcycling

Direct replacements are

compounds that are chemically identical to today's petroleumbased chemicals

Product options from biological recycling and upcycling

Direct replacements are

compounds that are chemically identical to today's petroleumbased chemicals

Performance-advantaged bioproducts are bio-based molecules that do not resemble petroleum-derived molecules, but offer a performance advantage over today's products

A brief aside to plants...

Biomass "recalcitrance" is all about unlocking polymers in a heterogeneous material

Bidlack, Oklahoma Academy of Science, 1993

Cellulose is a VERY recalcitrant material

$t_{1/2} \sim 5$ million years

Cellulose (wood) degradation in the environment

S. Cragg

The Gribble

The Gribble

How do Gribbles break down cellulose polymers?

How do Gribbles break down cellulose polymers?

How do Gribbles break down cellulose polymers?

Microbes have had millions of years to evolve to breakdown cellulose polymers – can we accelerate this process for synthetic plastics with biology and chemistry?

M. Kern, J. McGeehan et al. PNAS 2013

Where we started in terms of plastics?

Status quo for recycling of PET

* This total represents all clean flake sold into end markets by US reclaimers. See figure 7 for detail on total flake produced by US reclaimers from bottles.

Plastics recycling is mostly mechanical today, which is down-cycling...

Designing **enzymes** for plastics upcycling

BIODEGRADATION

A bacterium that degrades and assimilates poly(ethylene terephthalate)

Shosuke Yoshida,^{1,2}* Kazumi Hiraga,¹ Toshihiko Takehana,³ Ikuo Taniguchi,⁴ Hironao Yamaji,¹ Yasuhito Maeda,⁵ Kiyotsuna Toyohara,⁵ Kenji Miyamoto,²† Yoshiharu Kimura,⁴ Kohei Oda¹†

Yoshida *et al., Science* 2016 Austin *et al., PNAS* 2018

What does PETase look like at the molecular level?

How does the PET polymer bind to PETase?

How does the PET polymer bind to PETase?

PETase assays on solid polymers

PETase assays on solid polymers

10 *µ*m

PETase does not digest PLA or PBS

Polybutylene succinate (assynthesized, buffer control, with PETase)

Polylactic acid (as-synthesized, buffer control, with PETase)

Bio-based semi-aromatic polyester

Austin, Allen, Donohoe, Rorrer, Kearns et al., PNAS 2018

PETase digests PEF as well

Control PEF coupon

PEF coupon treated w/ PETase!

double mutant PETase!

Directed evolution of PETase enzymes

27

Directed evolution of PETase enzymes

Prospecting for hyperthermophilic PETases

Directed evolution of PETase enzymes

Prospecting for hyperthermophilic PETases

Directed evolution of PETase enzymes

TTHE MOST NOVEL OF SP FICTION

Prospecting for hyperthermophilic PETases

Microbial PET degradation is within sight now

Microbial PET degradation is within sight now

Hybrid chemical and biological processing

Using chemistry to breakdown PET faster

"give biology a hand"

Now the PET breakdown product is the biological substrate

Challenge 2: What do we do with the breakdown products of plastics?

Concept of plastics upcycling

Plastic goods are broken down using **biology** and **chemistry**

Exemplary upcycled products – high-strength composites

rPET + bio-based monomers enable <u>57% reduction in supply chain energy</u>, <u>40% GHG</u> emissions reduction for composites manufacturing and a <u>~5x value addition to rPET</u>

What else can we do with the depolymerization product?

Challenge 3: Can we make plastics recyclable-by-design?

Co-design for material performance and end-of-life catalytic processing

Polymer	Τ _g	T _m	H ₂ O Permeability (g 25µ/m²/day)	
PET	70	260	20	
PßKAT – 5%	70	260	18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PßKAT – 10 %	70	260	22	
PßKAT	70			

PBKAT predicted to last ~6 y in the environment relative to 450 y for PET PBKAT is likely more inherently chemically recyclable — ongoing work

Comparison to existing biodegradable plastic

Comparison to existing biodegradable plastic

Polybutylene-ßketoadipate-coterephthalate (PBKAT)

B-ketoadipate

PBKAT has similar properties to PET even at 10% BKA loading

BKA Loading	T _g (°C)	T _m (°C)	Permeability (g 25µ/m²/day)	E' (0.1 Hz,35°C)
PET	69	262	20	4.1 GPa
PBKAT – 1%	72	265	18	4.3 GPa
PBKAT – 5%	73	257	22	4.5 GPa
PBKAT – 10 %	71	261	21	4.1 GPa
PBKAT – 50 %	68	254		
PBKAT	70			

PBKAT is more amenable to hydrolysis than PET

PBKAT is more amenable to hydrolysis than PET

Upcycling Existing Plastics

Opportunities:

- Combine biological and chemo-catalytic ____ transformations for efficient upcycling
- Rich area for enzyme, microbe, and ____ chemical catalyst discovery and design
- Leverage decades of investment in ____ biomass conversion R&D

- Rich area for enzyme, microbe, and _____ chemical catalyst discovery and design
- Leverage decades of investment in biomass conversion R&D

Nexus of synthesis science, catalysis science, modeling, and process research

What plastics are the most energy and greenhouse gas intensive?

Nicholson et al. in preparation

The bioeconomy can let us rethink plastics from the bottom up

We can hunt for new biocatalysts...

Work from Rita Clare

We can hunt for new biocatalysts...

Work from Rita Clare

And new chemical catalysts too!

Work from Lucas Ellis

Acknowledgements **EXAMPLE** NATIONAL RENEWABLE ENERGY LABORATORY

- Yuriy Román-Leshkov, MIT
- Bob Allen, IBM
- Billy Hart-Cooper, USDA
- Adam Guss, ORNL
- Bob Hettich, ORNL
- Jen Dubois, MSU
- Eugene Chen, CSU
- Ken Houk, UCLA

ADVANCED MANUFACTURING OFFICE

46

Let's discuss!